
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PRACTICAL MEMORY
TUNING FOR
POSTGRESQL
Grant McAlister

Senior Principal Engineer

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why you should care

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

5 105 205 305 405 505 605 705 805 905 1005 1105 1205 1305 1405 1505 1605 1705

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

 (
T

P
S

)

Seconds

sysbench read only point selects

Normal Tuning Less than Optimal Tuning
11X

buffers not in memory swap thrashing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

OOM & Swap

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is the Out of Memory (OOM) Killer

postgres 1

postgres 2

postgres 3

postgres 4

badness_for_task = total_vm_for_task / (sqrt(cpu_time_in_seconds) * sqrt(sqrt(cpu_time_in_minutes)))

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM

request 8k

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM

FULL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM

request 16k

FULL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM SWAP

request 16k

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM SWAP

request 16k

swap out

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why swap?

RAM SWAP

request 16k

swap out

swap in

THRASHING

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview

6

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Memory Overview

Operating System

shared_buffers

postgres

processes

pagecache

25%

Operating System

shared_buffers

postgres

processes

pagecache

75%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pagecache

File System Cache

Storage

shared_buffers wal archiving misc

shared_buffers

wal
archiving

misc

temp_buffers

temp_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pagecache

File System Cache

Storage

shared_buffers wal archiving misc

shared_buffers

wal
archiving

misc

temp_buffers

temp_buffers

shared_buffers

misc temp_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size - Heat

Orders_2024

Orders_2023

Orders_2022

Orders_2021

Orders_2020

Orders_2019

Orders_2018

Orders_2017

800GB

80-100GB hot working set

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size - Heat

Orders_2024

Orders_2023

Orders_2022

Orders_2021

Orders_2020

Orders_2019

Orders_2018

Orders_2017

800GB

80-100GB hot working set

Inventory_SEA

Inventory_LAX

Inventory_SFO

Inventory_EWR

Inventory_SYD

Inventory_YYC

Inventory_BIO

Inventory_SBP

800GB

200-400GB hot working set

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

Random

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

Random

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

Random

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

Random

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

right leaning

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

right leaning

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Working Set Size – Indexes and Data

right leaning

heap

index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shared Buffers

12

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Small Cache

File System Cache

Storage

shared_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

shared_buffers comparison

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

25% of host memory - 80

tables

25% of host memory - 125

tables

25% of host memory - 250

tables

12.5% of host memory -

250 tables

5% of host memory - 250

tables

1% of host memory - 250

tables

P
e

rc
e

n
t

o
f

o
b

je
ct

 t
y
p

e
 i
n

 m
e

m
o

ry

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

sysbench - read only point selects

TPS

Index

Tables

60%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

shared_buffers comparison – pg_buffercache

Type

Usage

count

25% of host

memory

1% of host

memory

Index 5 855806 3630

Index 4 707472 2624

Index 3 124292 23

Index 2 22019 1754

Index 1 3799 73303

Index 0 558 71569

Table 5 316 1

Table 4 2764 3

Table 3 33572 105

Table 2 359638 180

Table 1 2933760 76505

Table 0 2606002 76303

15

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Cache

File System Cache

Storage

shared_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Cache

File System Cache

Storage

shared_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Cache

File System Cache

Storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Big Cache

File System Cache

Storage

shared_buffers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HugePages

17

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why HugePages – page mapping

18

PageTables shared_buffers

pg 1

pg 2

pg 3

4k

4k

size of page table = # of PostgreSQL process X amount of shared buffers accessed

2M

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

5

3
5

6
5

9
5

1
2

5

1
5

5

1
8

5

2
1

5

2
4

5

2
7

5

3
0

5

3
3

5

3
6

5

3
9

5

4
2

5

4
5

5

4
8

5

5
1

5

5
4

5

5
7

5

6
0

5

6
3

5

6
6

5

6
9

5

7
2

5

7
5

5

7
8

5

8
1

5

8
4

5

8
7

5

9
0

5

9
3

5

9
6

5

9
9

5

1
0

2
5

1
0

5
5

1
0

8
5

1
1

1
5

1
1

4
5

1
1

7
5

1
2

0
5

1
2

3
5

1
2

6
5

1
2

9
5

1
3

2
5

1
3

5
5

1
3

8
5

1
4

1
5

1
4

4
5

1
4

7
5

1
5

0
5

1
5

3
5

1
5

6
5

1
5

9
5

1
6

2
5

1
6

5
5

1
6

8
5

1
7

1
5

1
7

4
5

1
7

7
5

T
ra

n
sa

c
ti

o
n

s
P

e
r

S
e

c
o

n
d

 (
T

P
S

)

Seconds

Sysbench Read Only Point Selects – r6i.8xlarge – 250 tables x 2.5M rows – 160GB

250 Client Hupepage=on 250 Client Hupepage=off

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 20

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

5

3
5

6
5

9
5

1
2

5

1
5

5

1
8

5

2
1

5

2
4

5

2
7

5

3
0

5

3
3

5

3
6

5

3
9

5

4
2

5

4
5

5

4
8

5

5
1

5

5
4

5

5
7

5

6
0

5

6
3

5

6
6

5

6
9

5

7
2

5

7
5

5

7
8

5

8
1

5

8
4

5

8
7

5

9
0

5

9
3

5

9
6

5

9
9

5

1
0

2
5

1
0

5
5

1
0

8
5

1
1

1
5

1
1

4
5

1
1

7
5

1
2

0
5

1
2

3
5

1
2

6
5

1
2

9
5

1
3

2
5

1
3

5
5

1
3

8
5

1
4

1
5

1
4

4
5

1
4

7
5

1
5

0
5

1
5

3
5

1
5

6
5

1
5

9
5

1
6

2
5

1
6

5
5

1
6

8
5

1
7

1
5

1
7

4
5

1
7

7
5

T
ra

n
sa

c
ti

o
n

s
P

e
r

S
e

c
o

n
d

 (
T

P
S

)

Seconds

Sysbench Read Only Point Selects – r6i.8xlarge – 250 tables x 2.5M rows – 160GB

500 Client Hupepage=on 500 Client Hupepage=off

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 21

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

5

3
5

6
5

9
5

1
2

5

1
5

5

1
8

5

2
1

5

2
4

5

2
7

5

3
0

5

3
3

5

3
6

5

3
9

5

4
2

5

4
5

5

4
8

5

5
1

5

5
4

5

5
7

5

6
0

5

6
3

5

6
6

5

6
9

5

7
2

5

7
5

5

7
8

5

8
1

5

8
4

5

8
7

5

9
0

5

9
3

5

9
6

5

9
9

5

1
0

2
5

1
0

5
5

1
0

8
5

1
1

1
5

1
1

4
5

1
1

7
5

1
2

0
5

1
2

3
5

1
2

6
5

1
2

9
5

1
3

2
5

1
3

5
5

1
3

8
5

1
4

1
5

1
4

4
5

1
4

7
5

1
5

0
5

1
5

3
5

1
5

6
5

1
5

9
5

1
6

2
5

1
6

5
5

1
6

8
5

1
7

1
5

1
7

4
5

1
7

7
5

T
ra

n
sa

c
ti

o
n

s
P

e
r

S
e

c
o

n
d

 (
T

P
S

)

Seconds

Sysbench Read Only Point Selects – r6i.8xlarge – 250 tables x 2.5M rows – 160GB

1000 Client Hupepage=on 1000 Client Hupepage=off

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cost of not setting HugePages

22

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

20

40

60

80

100

120

140

250 500 1000

P
e

rc
e

n
t

o
f

h
o

st
 m

e
m

o
ry

G
B

 o
f

P
a

g
e

T
a

b
le

number of postgreSQL process

sysbench read only - shard_buffer=25% of ram

PageTables size (gb) % of host memory

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other Cluster Wide
Memory Parameters

23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cluster wide Parameters

Name Default

commit_timestamp_buffers shared_buffers/512 up to 1024 blocks, but not fewer than 16 block

multixact_member_buffers 32 * 8KB

multixact_offset_buffers 16 * 8KB

notify_buffers 16 * 8KB

serializable_buffers 32 * 8KB

subtransaction_buffers shared_buffers/512 up to 1024 blocks, but not fewer than 16 block

transaction_buffers shared_buffers/512 up to 1024 blocks, but not fewer than 16 block

max_prepared_transactions for XA (please don't use XA)

24

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Per Session

25

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

temp_buffers

shared_buffers temp_buffers

File System Cache

regular tables temp tables

global session

local

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

logical_decoding_work_mem

OLTP

DWSQL Stream
logical

decoding

slot

wal

log

DW2

logical

decoding

slot
SQL Stream

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Per Session and Operation

28

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

work_mem

postgres=# set work_mem TO '1 GB’;

postgres=# explain analyze
select mykey::bigint, (random()*10000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,3800000)
as mykey order by scratch;

QUERY PLAN
--
-
Sort (cost=7219224.79..7228724.79 rows=3800000 width=4116) (actual time=7083.506..8358.093 rows=3800000 loops=1)

Sort Key: (((random() * '10000000000'::double precision))::bigint)
Sort Method: external merge Disk: 3919000kB
-> Function Scan on generate_series mykey (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=194.053..493.117 rows=3800000 loops=1)

Planning Time: 0.049 ms
Execution Time: 9117.344 ms

(6 rows)

~3.8GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 30

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56

G
B

 R
A

M

Seconds

work_mem - sorting

1GB work_mem 3.8GB query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

work_mem

postgres=# set work_mem TO '4 GB’;

postgres=# explain analyze
select mykey::bigint, (random()*10000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,3800000)
as mykey order by scratch;

QUERY PLAN
--
-
Sort (cost=7219224.79..7228724.79 rows=3800000 width=4116) (actual time=2766.682..3408.706 rows=3800000 loops=1)

Sort Key: (((random() * '10000000000'::double precision))::bigint)
Sort Method: quicksort Memory: 4128025kB
-> Function Scan on generate_series mykey (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=194.365..506.965 rows=3800000 loops=1)

Planning Time: 0.047 ms
Execution Time: 3825.965 ms

(6 rows)

~3.8GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 32

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56

G
B

 R
A

M

Seconds

work_mem - sorting

4GB work_mem - 3.8GB query 1GB work_mem 3.8GB query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

work_mem

postgres=# set work_mem TO '4 GB’;

explain analyze select s1.filler, s2.filler,s1.mykey, s2.mykey, s1.scratch, s2.scratch from
(select mykey::bigint, (random()*1000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,3800000)
as mykey order by scratch) s1,
(select mykey::bigint, (random()*10000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,3800000)
as mykey order by scratch) s2
where s1.scratch=s2.scratch order by s1.mykey;

QUERY PLAN
--

Sort (cost=523467712452.33..523648212452.33 rows=72200000000 width=8232) (actual time=6851.977..6852.172 rows=1494 loops=1)

Sort Key: ((mykey.mykey)::bigint)
Sort Method: quicksort Memory: 3153kB
-> Merge Join (cost=14438449.59..1097542949.59 rows=72200000000 width=8232) (actual time=5558.904..6850.847 rows=1494 loops=1)

Merge Cond: ((((random() * '1000000000'::double precision))::bigint) = (((random() * '10000000000'::double precision))::bigint))
-> Sort (cost=7219224.79..7228724.79 rows=3800000 width=4116) (actual time=2785.745..3524.489 rows=3800000 loops=1)

Sort Key: (((random() * '1000000000'::double precision))::bigint)
Sort Method: quicksort Memory: 4128025kB
-> Function Scan on generate_series mykey (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=194.222..515.986

rows=3800000 loops=1)
-> Materialize (cost=7219224.79..7276224.79 rows=3800000 width=4116) (actual time=2772.383..2961.007 rows=380357 loops=1)

-> Sort (cost=7219224.79..7228724.79 rows=3800000 width=4116) (actual time=2772.377..2867.394 rows=380353 loops=1)
Sort Key: (((random() * '10000000000'::double precision))::bigint)
Sort Method: quicksort Memory: 4128025kB
-> Function Scan on generate_series mykey_1 (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=198.688..511.083

rows=3800000 loops=1)
Planning Time: 0.098 ms
Execution Time: 7511.377 ms

~3.8GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 34

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56

G
B

 R
A

M

Seconds

work_mem - sorting

4GB work_mem - 7.6GB+ query 4GB work_mem - 3.8GB query

1GB work_mem 3.8GB query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

work_mem

postgres=# set work_mem TO '4 GB’;

postgres=# explain analyze
select s1.filler, s2.filler,s1.mykey, s2.mykey, s1.scratch, s2.scratch from
(select mykey::bigint, (random()*1000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,18800000)
as mykey order by scratch) s1,
(select mykey::bigint, (random()*10000000000)::bigint as scratch ,
repeat('X', 1024)::char(1024) filler from generate_series(1,3800000)
as mykey order by scratch) s2
where s1.scratch=s2.scratch order by s1.mykey;

QUERY PLAN
--

Sort (cost=3853846009559.71..3854739009559.71 rows=357200000000 width=8232) (actual time=52689.953..52690.952 rows=7184 loops=1)

Sort Key: ((mykey_1.mykey)::bigint)
Sort Method: quicksort Memory: 15122kB
-> Merge Join (cost=43152211.85..5401444211.85 rows=357200000000 width=8232) (actual time=42991.198..52679.295 rows=7184 loops=1)

Merge Cond: ((((random() * '10000000000'::double precision))::bigint) = (((random() * '1000000000'::double precision))::bigint))
-> Sort (cost=7219224.79..7228724.79 rows=3800000 width=4116) (actual time=2771.496..2877.777 rows=380382 loops=1)

Sort Key: (((random() * '10000000000'::double precision))::bigint)
Sort Method: quicksort Memory: 4128025kB
-> Function Scan on generate_series mykey (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=194.404..516.400

rows=3800000 loops=1)
-> Materialize (cost=35932987.06..36214987.06 rows=18800000 width=4116) (actual time=40218.833..48614.865 rows=18800001 loops=1)

-> Sort (cost=35932987.06..35979987.06 rows=18800000 width=4116) (actual time=40218.824..46815.209 rows=18800000 loops=1)
Sort Key: (((random() * '1000000000'::double precision))::bigint)
Sort Method: external merge Disk: 19388680kB
-> Function Scan on generate_series mykey_1 (cost=0.00..376000.00 rows=18800000 width=4116) (actual

time=960.638..2593.178 rows=18800000 loops=1)
Planning Time: 0.102 ms
Execution Time: 55724.412 ms

~3.8GB

~18.8GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 36

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56

G
B

 R
A

M

Seconds

work_mem - sorting

4GB work_mem - 18.8GB+ query 4GB work_mem - 7.6GB+ query

4GB work_mem - 3.8GB query 1GB work_mem 3.8GB query

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

hash_mem_multiplier
postgres=# set hash_mem_multiplier = 2 ; set work_mem='1 GB';

QUERY PLAN

Hash Join (cost=2083766.00..5865195158.01 rows=167200000000 width=8232) (actual time=5393.748..27494.124 rows=3338 loops=1)
Hash Cond: (s1.scratch = s2.scratch)
-> Subquery Scan on s1 (cost=0.00..264000.00 rows=8800000 width=4116) (actual time=363.214..2759.362 rows=8800000 loops=1)

-> Function Scan on generate_series mykey (cost=0.00..176000.00 rows=8800000 width=4116) (actual time=363.213..1686.157 rows=8800000 loops=1)
-> Hash (cost=114000.00..114000.00 rows=3800000 width=4116) (actual time=5023.109..5023.111 rows=3800000 loops=1)

Buckets: 524288 Batches: 8 Memory Usage: 505770kB
-> Subquery Scan on s2 (cost=0.00..114000.00 rows=3800000 width=4116) (actual time=161.237..1005.102 rows=3800000 loops=1)

-> Function Scan on generate_series mykey_1 (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=161.236..625.366 rows=3800000 loops=1)(10 rows)
Execution Time: 27597.763 ms

postgres=# set hash_mem_multiplier = 1 ; set work_mem=‘2 GB';

QUERY PLAN

Hash Join (cost=2083766.00..5865195158.01 rows=167200000000 width=8232) (actual time=4941.337..27460.203 rows=3330 loops=1)
Hash Cond: (s1.scratch = s2.scratch)
-> Subquery Scan on s1 (cost=0.00..264000.00 rows=8800000 width=4116) (actual time=308.103..2682.171 rows=8800000 loops=1)

-> Function Scan on generate_series mykey (cost=0.00..176000.00 rows=8800000 width=4116) (actual time=308.102..1627.632 rows=8800000 loops=1)
-> Hash (cost=114000.00..114000.00 rows=3800000 width=4116) (actual time=4632.871..4632.873 rows=3800000 loops=1)

Buckets: 524288 Batches: 8 Memory Usage: 506081kB
-> Subquery Scan on s2 (cost=0.00..114000.00 rows=3800000 width=4116) (actual time=150.922..917.699 rows=3800000 loops=1)

-> Function Scan on generate_series mykey_1 (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=150.921..573.278 rows=3800000 loops=1)
Execution Time: 27571.422 ms

postgres=# set hash_mem_multiplier = 8 ; set work_mem=‘2 GB';
QUERY PLAN

Hash Join (cost=161500.01..5852447500.01 rows=167200000000 width=8232) (actual time=3166.564..6799.798 rows=3367 loops=1)
Hash Cond: ((((random() * '1000000000'::double precision))::bigint) = s2.scratch)
-> Function Scan on generate_series mykey (cost=0.00..176000.00 rows=8800000 width=4116) (actual time=312.749..1225.873 rows=8800000 loops=1)
-> Hash (cost=114000.00..114000.00 rows=3800000 width=4116) (actual time=2846.645..2846.647 rows=3800000 loops=1)

Buckets: 4194304 Batches: 1 Memory Usage: 4040581kB
-> Subquery Scan on s2 (cost=0.00..114000.00 rows=3800000 width=4116) (actual time=162.493..905.717 rows=3800000 loops=1)

-> Function Scan on generate_series mykey_1 (cost=0.00..76000.00 rows=3800000 width=4116) (actual time=162.491..566.310 rows=3800000 loops=1)
Execution Time: 7234.249 ms

Almost a 75% reduction in execution time

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Per Session Item

38

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

prepared statements

PREPARE sbtestplan (int) AS
SELECT * FROM sbtest1 WHERE id=$1 ;

EXECUTE sbtestplan(1);

sbtest=# SELECT name, ident, level, total_bytes
FROM pg_backend_memory_contexts where name ='CachedPlanSource';
name | ident | level | total_bytes

------------------+---+-------+-------------
CachedPlanSource | PREPARE sbtestplan3 (int) AS +| 2 | 4096

| SELECT * FROM sbtest3 WHERE id=$1 ; | |
CachedPlanSource | PREPARE sbtestplan2 (int) AS +| 2 | 4096

| SELECT * FROM sbtest2 WHERE id=$1 ; | |
CachedPlanSource | PREPARE sbtestplan (int) AS +| 2 | 4096

| SELECT * FROM sbtest1 WHERE id=$1 ; | |

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

prepared statements – 10 Million

40

0

20

40

60

80

100

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

G
B

 U
se

d

Seconds

10 million prepared statements - 1 client

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Maintenance

41

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem – Index builds

sbtest=# set maintenance_work_mem = '1 GB';
^

sbtest=# create index foo on sbtest1 (id,c,pad,k desc) ;
CREATE INDEX
Time: 45803.577 ms (00:45.804)

sbtest=# set maintenance_work_mem = '2 GB';

sbtest=# create index foo on sbtest1 (id,c,pad,k desc) ;
CREATE INDEX
Time: 45904.760 ms (00:45.905)

sbtest=# set maintenance_work_mem = '4 GB';

sbtest=# create index foo on sbtest1 (id,c,pad,k desc) ;
CREATE INDEX
Time: 46081.414 ms (00:46.081)

~1GB

~2GB

~3GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem – how vacuum works

heap

index

index

vacuum
maintenance_work_mem

tid to clean

scan heap

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem – how vacuum works

heap

index

index

vacuum
maintenance_work_mem

tid to clean

scan heap scan indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 12-16)

update sbtest1 set k=k+1; UPDATE all 500 M rows in the table
UPDATE 500000000

sbtest=# set maintenance_work_mem=‘200 MB';

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
… 13 more lines of index vacuuming
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 15
pages: 0 removed, 27375047 remain, 27375047 scanned (100.00% of total)
tuples: 500000000 removed, 500000000 remain, 0 are dead but not yet removable
removable cutoff: 119558641, which was 91 XIDs old when operation ended
new relfrozenxid: 119558641, which is 50002327 XIDs ahead of previous value
frozen: 27194801 pages from table (99.34% of total) had 500000000 tuples frozen
index scan needed: 15300869 pages from table (55.89% of total) had 500000000 dead item identifiers removed
index "sbtest1_pkey": pages: 2741864 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405158 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 22363.650 ms, write: 76810.339 ms
avg read rate: 49.223 MB/s, avg write rate: 194.936 MB/s
buffer usage: 118567797 hits, 28698356 misses, 113651873 dirtied
WAL usage: 183521738 records, 113651894 full page images, 313681897335 bytes
system usage: CPU: user: 3756.62 s, system: 99.85 s, elapsed: 4554.85 s

Memory use – 6 bytes per dead item in heap (4 for block, 2 for offset)

500,000,000 x 6 ≈ 2861 MB needed

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 12-16)

update sbtest1 set k=k+1; UPDATE all 500 M rows in the table
UPDATE 500000000

sbtest=# set maintenance_work_mem=‘3 GB’;

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 3
pages: 0 removed, 27375047 remain, 27367689 scanned (99.97% of total)
tuples: 500000000 removed, 500134706 remain, 0 are dead but not yet removable
removable cutoff: 119560957, which was 89 XIDs old when operation ended
new relfrozenxid: 119560957, which is 568 XIDs ahead of previous value
frozen: 26637843 pages from table (97.31% of total) had 500000000 tuples frozen
index scan needed: 27197885 pages from table (99.35% of total) had 500000000 dead item identifiers removed
index "sbtest1_pkey": pages: 2741864 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405158 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 29066.179 ms, write: 79510.303 ms
avg read rate: 56.429 MB/s, avg write rate: 121.372 MB/s
buffer usage: 64896769 hits, 32488492 misses, 69879342 dirtied
WAL usage: 151000537 records, 69879380 full page images, 209552080351 bytes
system usage: CPU: user: 3656.90 s, system: 117.19 s, elapsed: 4498.00 s

Memory use – 6 bytes per dead item in heap (4 for block, 2 for offset)

500,000,000 x 6 ≈ 2861 MB needed

Only use max of 1GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 17+)

update sbtest1 set k=k+1; UPDATE all 500 M rows in the table
UPDATE 500000000

sbtest=# set maintenance_work_mem=‘200 MB';

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 3
pages: 0 removed, 27281773 remain, 27281773 scanned (100.00% of total)
tuples: 500000000 removed, 500000000 remain, 0 are dead but not yet removable
removable cutoff: 81359906, which was 60 XIDs old when operation ended
new relfrozenxid: 81359906, which is 50000640 XIDs ahead of previous value
frozen: 27094240 pages from table (99.31% of total) had 500000000 tuples frozen
index scan needed: 15247188 pages from table (55.89% of total) had 500000000 dead item identifiers removed
index "sbtest1_pkey": pages: 2741864 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405158 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 22918.753 ms, write: 65940.679 ms
avg read rate: 73.603 MB/s, avg write rate: 150.222 MB/s
buffer usage: 57030696 hits, 28230433 misses, 57617361 dirtied
WAL usage: 112180070 records, 57617381 full page images, 163701031507 bytes
system usage: CPU: user: 2692.02 s, system: 97.26 s, elapsed: 2996.46 s

Memory use – 4 bytes per block with dead tuple plus bitmap for offset

Used between 400 and 600 MB (5+X reduction in memory)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 12-16)

update sbtest1 set k=k+1 where (ctid::text::point)[1]::bigint < 5; UPDATE all blocks but only some rows
UPDATE 58634114

sbtest=# set maintenance_work_mem=‘200 MB’;

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 2
pages: 0 removed, 27375047 remain, 27310183 scanned (99.76% of total)
tuples: 58634114 removed, 501167394 remain, 0 are dead but not yet removable
removable cutoff: 119558905, which was 55 XIDs old when operation ended
new relfrozenxid: 119558905, which is 264 XIDs ahead of previous value
frozen: 8737533 pages from table (31.92% of total) had 58634114 tuples frozen
index scan needed: 20162834 pages from table (73.65% of total) had 58634114 dead item identifiers removed
index "sbtest1_pkey": pages: 2741864 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405158 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 20886.445 ms, write: 45927.957 ms
avg read rate: 73.424 MB/s, avg write rate: 144.178 MB/s
buffer usage: 59121573 hits, 25966600 misses, 50988868 dirtied
WAL usage: 100700060 records, 50988886 full page images, 138744674856 bytes
system usage: CPU: user: 2428.40 s, system: 77.22 s, elapsed: 2762.91 s

Memory use – 6 bytes per dead item in heap (4 for block, 2 for offset)

58,634,114 x 6 ≈ 224 MB needed

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 17+)

update sbtest1 set k=k+1 where (ctid::text::point)[1]::bigint < 5; UPDATE all blocks but only some rows
UPDATE 59461887

sbtest=# set maintenance_work_mem=‘200 MB’;

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 3
pages: 0 removed, 27281773 remain, 27203678 scanned (99.71% of total)
tuples: 59461887 removed, 501403118 remain, 0 are dead but not yet removable
removable cutoff: 81360196, which was 53 XIDs old when operation ended
new relfrozenxid: 81360196, which is 290 XIDs ahead of previous value
frozen: 9163577 pages from table (33.59% of total) had 59461887 tuples frozen
index scan needed: 20599698 pages from table (75.51% of total) had 59461887 dead item identifiers removed
index "sbtest1_pkey": pages: 2741864 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405158 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 17411.841 ms, write: 43079.573 ms
avg read rate: 77.004 MB/s, avg write rate: 161.922 MB/s
buffer usage: 64207953 hits, 26250232 misses, 55198523 dirtied
WAL usage: 97593961 records, 55198539 full page images, 145589683624 bytes
system usage: CPU: user: 2385.56 s, system: 75.04 s, elapsed: 2663.24 s

Memory use – 4 bytes per block with dead item plus bitmap for offset

Used between 400 and 600 MB (i.e. the same as last run with less updates)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Memory Use – Version 16 vs 17

49

Workload A

Workload B

4 blocks

6 dead tuples

V16 – 6 x 6bytes

V16 – 6 x 6bytes

V17 – 4 x 4bytes +

bitmap for offset

V17 – 1 x 4bytes +

bitmap for offset

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 17+)

benchdb=> update sbtest1 set k = k + 1 where (ctid::text::point)[1]::bigint < 5;
UPDATE 166666668

sbtest=# set maintenance_work_mem=‘1 GB’;

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
… 3 more lines of index vacuuming
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 5
pages: 0 removed, 166666667 remain, 166666667 scanned (100.00% of total)
tuples: 166666668 removed, 500000000 remain, 0 are dead but not yet removable
removable cutoff: 81363963, which was 166 XIDs old when operation ended
new relfrozenxid: 81363963, which is 1294 XIDs ahead of previous value
frozen: 166666667 pages from table (100.00% of total) had 500000000 tuples frozen
index scan needed: 166666667 pages from table (100.00% of total) had 693018132 dead item identifiers removed
index "sbtest1_pkey": pages: 2741898 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405132 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 1904853.515 ms, write: 694137.509 ms
avg read rate: 296.413 MB/s, avg write rate: 336.211 MB/s
buffer usage: 211128150 hits, 314622418 misses, 356864387 dirtied
WAL usage: 690192617 records, 356864414 full page images, 241152922879 bytes
system usage: CPU: user: 5389.92 s, system: 1597.28 s, elapsed: 8292.43 s

Memory use – 4 bytes per block with dead tuple plus bitmap for offset

Used between 4 and 5 GB (10 % fillfactor – a lot more block)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum (Version 17+)

benchdb=> update sbtest1 set k = k + 1 where (ctid::text::point)[1]::bigint < 5; Fillfactor of 10% so lots many blocks
UPDATE 166666668

sbtest=# set maintenance_work_mem=‘5 GB’;

benchdb=> vacuum (verbose) sbtest1;
INFO: vacuuming "benchdb.public.sbtest1"
INFO: launched 1 parallel vacuum worker for index vacuuming (planned: 1)
INFO: finished vacuuming "benchdb.public.sbtest1": index scans: 1
pages: 0 removed, 166666667 remain, 166666667 scanned (100.00% of total)
tuples: 166666667 removed, 500000000 remain, 0 are dead but not yet removable
removable cutoff: 81368431, which was 151 XIDs old when operation ended
new relfrozenxid: 81368431, which is 258 XIDs ahead of previous value
frozen: 166666667 pages from table (100.00% of total) had 166666667 tuples frozen
index scan needed: 166666667 pages from table (100.00% of total) had 166666667 dead item identifiers removed
index "sbtest1_pkey": pages: 2741898 in total, 0 newly deleted, 0 currently deleted, 0 reusable
index "k_1": pages: 2405132 in total, 0 newly deleted, 0 currently deleted, 0 reusable
I/O timings: read: 1650457.241 ms, write: 688257.723 ms
avg read rate: 321.438 MB/s, avg write rate: 349.887 MB/s
buffer usage: 194261510 hits, 310946909 misses, 338467339 dirtied
WAL usage: 671795571 records, 338467370 full page images, 198971096165 bytes
system usage: CPU: user: 4940.17 s, system: 1591.97 s, elapsed: 7557.50 s

Memory use – 4 bytes per block with dead tuple plus bitmap for offset

Used between 4 and 5 GB (10 % fillfactor – a lot more block)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vacuum memory allocation Version 16 vs 17

52

Running 50 table vacuums in parallel with 1 GB maintance_work_mem – 5M Row table

V16 – 11,732 MB

V17 – 300 MB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

maintenance_work_mem - vacuum parallel

sbtest=# set maintenance_work_mem='1 GB’;

sbtest=# vacuum (verbose) sbtest1;
INFO: vacuuming "sbtest.public.sbtest1"
INFO: launched 2 parallel vacuum workers for index vacuuming (planned: 2)

heap

index

index

vacuum

maintenance_work_mem

tid to clean

scan heap scan indexes

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

autovacuum_work_mem

autovacuum_work_mem X autovacuum_max_workers = possible memory used

Example

1 GB X 30 workers = 30 GB possible memory used by autovacuum

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why you should care

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

5 105 205 305 405 505 605 705 805 905 1005 1105 1205 1305 1405 1505 1605 1705

T
ra

n
sa

ct
io

n
s

P
e

r
S

e
co

n
d

 (
T

P
S

)

Seconds

sysbench read only point selects

Normal Tuning Less than Optimal Tuning
11X

buffers not in memory swap thrashing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Grant McAlister

